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1. Abstract

The eastern Great Basin (EGB) extends throughout the states of Arizona, Colorado, Idaho, Utah, and
Wyoming, covering approximately 411,000 km?2. In recent years, wildfires in the EGB have increased in
frequency and size, representing a growing concern for our partners at the Bureau of Land Management
(BLM), the National Weather Service (NWS), and the Great Basin Coordination Center (GBCC). Live fuel
moisture (LFM) is an important factor in predicting wildfire risk, as dry vegetation requires less energy to
combust than wet vegetation. Land managers currently derive LEM levels from just 165 i situ sites in the
EGB. In order to provide partners with a more accurate assessment of LFM, the team used data from the
National Elevation Dataset, Aqua and Terra Moderate Resolution Imaging Spectroradiometer, and Suomi
National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite. These datasets include
vegetation indices, evapotranspiration, and topographic variables, which were used to create biweekly
forecasts of LFM throughout the EGB. An accuracy assessment was conducted using historical 2z situ data
from our partners at the BLM and the GBCC. This model allowed our partners to make informed decisions
regarding resource allocation in response to the predicted timing and severity of wildfires in the EGB.
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2. Introduction

2.1 Background Information

Wildfires are an important part of the ecosystem in the eastern Great Basin (EGB), a 411,000 km? region
covering portions of Arizona, Colorado, Idaho, Utah, and Wyoming. Wildfires improve ecosystem health by
regulating plant succession and species composition (Leblon, Bourgeau-Chavez, & San-Miguel-Ayanz, 2012).
However, wildfires can threaten human lives and infrastructure (Leblon, Bourgeau-Chavez, & San-Miguel-
Ayanz, 2012). Additionally, wildfires promote the spread of invasive species, such as cheatgrass (Bromus
tectorum), which has changed the species composition in the EGB (Pilliod, Welty, & Arkle, 2017). Changes in
vegetation, climate, and land use are all contributing to the increase in frequency and size of wildfires in the
western United States (Davis & Weber, 2018; Dennison, Brewer, Arnold, & Moritz, 2014; Pilliod, Welty, &
Arkle, 2017). Due to the rising concern related to the impacts of wildfire on human resources, predicting
wildfire ignition and severity can help managers make well-informed decisions regarding resource allocation.
While many factors influence the ignition and severity of wildfires, one strong natural indicator is live fuel
moisture (LFM) (Yebra et al., 2013; Nghiem et al., 2014).

Currently, there are 165 in situ LFM measurement locations in the EGB, allowing for approximately one
sample per 2,600 km*. However, the majority of sampling occurs in Idaho and Utah with gaps of up to 100
km between sites. Increasing the spatial resolution of LEM measurements would allow our partners at the
Bureau of Land Management (BLM), the Great Basin Coordination Center (GBCC), and the National
Weather Service (NWS) to better predict wildfires. In order to accomplish this, our team created a forecasting
model to predict LFM for May through September using remotely sensed data and iz situ measurements. The
model was validated using LFM measurements from 2019 and can be used to forecast LFM during future fire
seasons.

During the Fall 2019 NASA DEVELOP term, a model was created to validate LFM in the EGB. This model
used elevation, aspect, evapotranspiration (ET), land surface temperature (LST), and the Normalized
Difference Vegetation Index (NDVI) to make predictions about LFM. Using 7 situ measurements as
validation, the model had an average accuracy of 8.2%. This term, our team further refined the model with
additional inputs to increase accuracy and to create biweekly LFM forecast maps. To supplement the model,
Enhanced Vegetation Index 2 (EVI2) was selected because EVI2-based LFM estimations can predict the start
of a fire season and highly correlate with LEM 77 situ measurements (Myoung et al., 2018). Normalized



Difference Water Index NDWI) was selected because NDWI levels can support LEM seasonal monitoring
due to the inclusion of a water absorption band, whereas NDVI relies on the “greenness” instead of true
moisture (Dennison, Roberts, Peterson, & Rechel, 2004). Leaf Area Index (LAI) was selected because it is
representative of vegetation biomass, which is related to LFM (Myoung et al., 2018). Fraction of Absorbed
Photosynthetically Active Radiation (FPAR) was selected due to its relationship to vegetation productivity
and thus, it may correspond to how much water a plant is using (Yu et al., 2018).

In situ sites

Eastern Great

Basin Fire Zones

Figure 1. The EGB study area in AZ, CO, ID, UT, & WY. There are 165 7 sitn LEM observation sites.

2.2 Project Partners & Objectives

Our partners for this project were the Upper Snake Field Office of the Bureau of Land Management (BLM),
the Pocatello office of the National Oceanic and Atmospheric Administration (INOAA) National Weather
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Service (NWS), and the Great Basin Coordination Center (GBCC) under the National Interagency Fire
Center (NIFC). The BLM and the NWS were the end users of the forecasting model, as they issue wildfire
safety warnings and allocate resources based on LFM estimations. Our LFM forecasting model increased the
spatial resolution of LFM estimates across the EGB, allowing our partners to make better-informed decisions
regarding resource allocation to combat wildfires.

The primary objective of this project was to refine an existing predictive LFM model to forecast LFM for
future fire seasons in the EGB. Our team refined the existing model and determined the accuracy of this
updated model by validating against 7 sitn LFM measurements. The model utilized i szzu LFM
measurements, topographic variables, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and
Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) data to
forecast LFM across the EGB.

3. Methodology

3.1 Data Acquisition

Our team acquired 7z sit# measurements of LFM from the National Fuel Moisture Database for April 1st
through October 31st of 2019. These measurements are taken biweekly by land managers at 165
measurement points across the Eastern Great Basin by weighing sampled vegetation while it is wet (wet
weight) and after it has been thoroughly dried (dry weight). The LFM measurement is computed according to
Equation 1 below.

(wet weight of sample - dry weight of sample)

Live Fuel Moisture =
tve el Molsture dry weight of sample

Egquation 1. Formula used to determine LFM measurements in the National Fuel Moisture Database.

We downloaded existing vegetation type (EVT) data for the EGB in 2018 from the LANDFIRE dataset.
Additionally, the team downloaded data from the USGS National Elevation Dataset INED) in order to create
aspect and elevation rasters at 10-meter spatial resolution. NASA Earth observation (EO) data were
downloaded from NASA EARTHDATA and the Land Processes Distributed Active Archive Center (LP
DAAC) Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). The Suomi
National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS)
provided NDVI, FPAR, LAI, and EVI2, while Aqua and Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) provided the team with ET and surface reflectance. All data were acquired for
April 1-October 31, 2019 (Table 1).

Platform and Data Product
Sensor
Suomi-NPP VIIRS VNP13A1

Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006

Suomi-NPP VIIRS VNP15A2H
Leaf Area Index/FPAR 8-Day L4 Global 500 m SIN Grid V006

Aqua MODIS MYD16A2
Net Evapotranspiration
8-Day L4 Global 500 m SIN Grid V006

Terra MODIS MOD16A2




Net Evapotranspiration
8-Day Global 500m
SIN Grid V006

Terra MODIS MODO09A1

Surface reflectance

8-Day Global 500m
SIN Grid V006

Table 1. List of sensors and data products

3.2 Data Processing

Data processing was conducted primarily using Esti ArcGIS Pro 2.5. Initially, the historic fuel moisture
dataset was modified to include “Term” and “UID” fields. Each month was divided into two periods, term 1
(the 1t through the 15% of the month) and term 2 (the 16t through the last day of the month). This table was
then used to create a feature class by utilizing latitude and longitude of the field sampling sites; this feature
class was later used as a model input. Next, a buffer was created around the USGS NED dataset, in order to
accurately resample the study area boundaries. Then, aspect and elevation rasters were created from the NED
dataset that included the buffer. These rasters were then clipped to the study area.

Further data processing occurred within the LFM forecasting model that was built in ArcGIS Pro’s Model
Builder. This processing is summarized in Appendix A. First, the fuel type of interest was selected, along with
the term to which to be forecasted. For the construction and validation of the model, our team selected all
sagebrush species as the fuel of interest, but end users are able to select other fuel types if desired. The
desired study area is then selected—all further processing will be clipped to this area. To validate the model
using 2019 data, we selected the entire EGB as the study area. Future users can use fire zones within the
EGB or other polygons that include an area of interest. Time 1 and Time 2 data inputs (Appendix A, blue
ovals) are selected for the term of interest (e.g. forecasting for Term 1 of July requires Term 1 June and Term
2 June as data inputs). These inputs include LAI, FPAR, Aqua ET, Terra ET, EVI2, NDVI, and surface
reflectance as rasters and zz sitn LEM measurements as feature classes. Before the linear regression runs,
NDWI is calculated from surface reflectance, using Equation 2.

857-P1241
NDWI = psspiait
p857-p1241

Egnation 2. Formula used to derive NDWI from surface reflectance bands of wavelength pss7and p1241.

The Linear Regression (Appendix A) uses R-ArcGIS Bridge to leverage R’s capabilities in conjunction with
ArcGIS Pro to compute a linear regression equation between the Time 1 and Time 2 rasters for each EO data
product and the iz sitzu LFM measurements. The computed equation is then used to predict a Time 3 raster
for each variable. The elevation and aspect rasters are used as constant inputs into the model (no linear
regression is conducted for these inputs). The prediction rasters and topographic variables are then
composited. This composited image is used as an input into the Train Support Vector Machine (SVM)
Classifier tool, which is trained using the predicted 7 situ LFM measurements. The SVM generates a classifier
which is used to populate an LFM forecast raster. This LEM forecast raster is a classified map that categorizes
LFM into 6 classes according to BLM guidelines (Appendix B). Finally, the classified maps were masked to
include only shrubland using a LANDFIRE shrubland layer, as the model was trained using only sagebrush
LFM measurements. This process was completed for each term between May and September, 2019 to create
a classified raster for each term (Figure 2, Appendix C).
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Figure 2. Live Fuel Moisture forecast for May Term 1, 2019 (Term 5.1)
3.3 Data Analysis

We validated the predictions generated by the LFM forecasting model against 7 sit# LFM measurements
taken during the forecasted term. In order to determine model accuracy, we computed a confusion matrix in
ArcGIS Pro that compared the classified map and the 7# sitn data for the forecasted term. The validation
points were taken from the term 3 7 sitn measurements (if forecasting to 1%t term of July, 7 sitn points from
1st term of July were used to validate). The confusion matrix takes the actual class value of the 7 situ point
and compares it to the forecasted value on the classified map where the iz situ point is located. If the class
value of the 7n situ point matches the classified map’s value, the confusion matrix identifies it as a success.
This is done for all validation points available for the forecasted term (Figure 3). The confusion matrices



provide an overall accuracy of the classified map, which indicates how often our model is predictcting correct
LFM at each measurement site.

4. Results & Discussion

4.1 Analysis of Results

The classified forecast maps can be seen in Appendix C. These forecasts show that LFM is predicted to be
highest in May, and decreases throughout the season, as expected during a typical fire season. There appears
to be the most variation throughout the EGB later in the fire season, particularly in August. The results of
our confusion matrices showed overall accuracies that were highly variable (Figure 3, Appendix D). The
average accuracy of our model was 13.65%. The majority of the low accuracies occurred in the beginning of
the fire season, from May to the beginning of July. For these first 5 terms, the accuracy ranged from 0% to
just 1.56% (Figure 3). This indicates that the model was not able to accurately predict LFM in the beginning
of the 2019 fire season, when LEM was highest. These low accuracies in the beginning of the fire season may
be due to the scatcity of 7 situ points against which we validated the model results. There are fewer 7 sitn
measurements collected during these early terms because there may still be snow at some sampling locations
or frequent precipitation, which prevents 7 sitn sampling of LEM (Figure 3, Appendix E). Having fewer
points against which points to validate decreases the likelihood of a correct prediction because the sample size
is too low. In general, accuracy increases are the number of iz sifu measurements for training and validation
increases (Figure 3).
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Figure 3. Overall accuracy, the number of 7 sifu measurements taken in the EGB that are available for
validation, and the maximum number of 7 sit# measurements available for training for each term.

Notably, the classifed map for the second term of August appears to overall have higher LFM than the first
term of August (Appendix C). This is not expected, as it is anticipated that LM would continue to decrease
continuously from July to September due to dry conditions. It is possible that this high LFM in August is due
to higher-than-average precipitation that occurred during the beginning of August (National Weather Service,
2019). Due to the biweekly nature of our forecasting model and the lag between a precipitation event and the
uptake of moisture by vegetation, this event would not be represented until the next forecast, term 2 of
August, when LFM increased. Furthermore, the second term of August has a 0.00% accuracy; along with its



higher LFM and this low accuracy may be due to having fewer measurements taken for the term than for
previous terms.

The main limitation of this model is the number of 7 sit# measurements available to train and validate the
model. Although there are 165 sampling locations throughout the EGB, not every location samples
sagebrush, which was the primary fuel of interest for this study. Additionally, not every sampling location (of
the 165) is sampled during every term, meaning many fewer measurements are used by the model. This not
only limits the number of training points, but also limits the number of points on which we validate the
model. Furthermore, not all of the sage measurements that were taken in each term can be used to train the
model. In order to run the linear regression, only sites that were sampled for sage during both the first term
and second term may be used to train the model. Then, SVM uses just 60% of those measurements as
training points. These limitations result in very few points available for training and the model (Figure 3),
which decreases the model’s accuracy.

Despite the low average accuracy of the classified maps produced by the model, the model can still be useful
for future fire seasons. Although accuracy is low at the beginning of the season, the maps still represent when
the “green-up” phase stops and the risk of fire begins increasing as LFM decreases. The forecasts are most
accurate when LFM is low, which provides vital information about when fire risk will be at its peak due to
low LFM.

4.2 Future Work

Further refinement is required to increase model accuracy and better forecast LEM in the EGB. This may be
done by incorporating weather forecasts, such as temperature, relative humidity, precipitation, and wind
speed as input parameters. Before a fire ignites, land managers and meteorologists rely heavily on weather
factors to gauge wildfire risk level (Nghiem et al., 2014). Nghiem et al. (2014) found that their empirical LFM
model was improved by including temperature, and found that incorporation of daily minimum temperature
resulted in the highest improvement. Thus, adding weather variables could improve our model. Our team
attempted to incorporate weather variables into the model, but were not able to due to time constraints and
data processing time. Our partners could easily add weather forecasts, acquired from the National Blend of
Models Dataset (NBM), into the model as an input parameter, which may increase the accuracy for the 2020
fire season and beyond.

Previous studies have shown that soil moisture data from the Soil Moisture Active Passive (SMAP) L-band
radiometer (SMAP) correlates with live fuel moisture (Jia, Kim, Nghiem, & Kafatos, 2019). Our team was
interested in incorporating SMAP data into the model as a monthly parameter. However, due to processing
time and the feasibility of integrating the processes into our model during this ten-week project, our team
opted to exclude SMAP data. An additional study with fewer time constraints could benefit from
incorporating SMAP soil moistutre data into the LFM forecasting model. SMAP data could also be more
useful in refining the model when used for smaller regions such as fire zone study areas in comparison to the
larger EGB study area.

Another dataset that should be pursued in future LFM forecasting models is the ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS), which measures the temperature of
vegetation as an indicator of water stress (Greicius & Dunbar, 2018). This dataset was considered for the
project, but it was ultimately excluded due to a lack of data in our study area. Other study areas with more
ECOSTRESS coverage could benefit from including vegetation surface temperature data.

Additonally, future researchers could modify the model to rely on a single sctipt in order to produce LFM
forecasting maps. Currently, the LFM model requires 29 input parameters and a few exterior geoprocessing
steps; conversely, a script may require fewer input parameters allowing for a more user-friendly experience.
Refining the model by using one script could decrease processing time and reduce error when running the
model.



5. Conclusions

The results of this project indicate that a remotely sensed forecasting LFM model is feasible for the EGB, and
our methods may be applied to other geographical areas that would benefit from such a model. Our model is
able to predict the spatial variation of LEM across the EGB at a spatial resolution that is approximately ten
thousand times higher than what was provided by the 7 sit# measurements, resolving down from
approximately 2,600km? to just 250m2. However, the prediction accuracy varies considerably, and the model
forecasted especially low accuracy early in the fire season. In order to determine if this is a flaw of the model
or due to a lack of data, more results should be generated and additional % sizu data should be included. We
believe the model accuracy could also be improved by using soil moisture, water stress, and weather data as
inputs. Overall, the forecasting model provides land managers with the abiity to predict LFM in the EGB at a
finer resolution than previously possible. This method will help improve predicting fire risk, allocating
resources, and protecting human lives.
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7. Glossary

AppEEARS — Application for Extracting and Exploring Analysis Ready Samples
BLM - Bureau of Land Management

DEM - Digital Elevation Model

EGB - castern Great Basin

EO - Earth observations — Satellites and sensors that collect information about the Earth’s physical,
chemical, and biological systems over space and time

ET - Evapotranspiration

EVT - Existing Vegetation Type

EVI2 — Enhanced Vegetation Index

FPAR - Fraction of Absorbed Photosynthetically Active Radiation
GBCC - Great Basin Coordination Center

In situ — on-site, ground truth

LAT - Leaf Area Index

LFM - Live Fuel Moisture

LP DAAC - Land Processes Distributed Active Archive Center
MODIS — MODerate resolution Imaging Spectroradiometer
NBM - National Blend of Models

NED - National Elevation Dataset

NIFC — National Interagency Fire Center

NDVI — Normalized Difference Vegetation Index

NDWI — Normalized Difference Water Index

NOAA - National Oceanic and Atmospheric Administration
NWS — National Weather Service

Suomi-NPP — Suomi National Polar-Orbiting Partnership

USDA - United States Department of Agriculture

USGS — United States Geological Survey

VIIRS - Visible Infrared Imaging Radiometer Suite
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9. Appendices

Appendix A

Workflow of the LFM model built in ArcGIS Pro. Blue ovals indicate user-input features, green squares
indicate processes run, and orange ovals indicate datasets produced within the model. The environment in
which the model is run indicates that layers are all resampled to a 250m resolution and reprojected to NAD
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Appendix B
Classes represented in the classified LFM forecase maps based on BLM guidelines.
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1 <74

75-99

100-124

125-149

150-199

N[N

> 200
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Appendix C
Live Fuel Moisture Forecasting Maps for the 2019 fire season.

=

= = =1 =

Live Fuel Moisture Classes (%o)
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Appendix D

Overall accuracy of the predicted LFM map for each term as calculated in the confusion matricies. *This term
included Aqua MODIS surface reflectance in calculating NDWI, rather than Terra MODIS surface
reflectance — a potential source of error.

Term Overall Accuracy (%)

May (Term 1) 0.00
May (Term 2) 0.00
June (Term 1) 1.56
June (Term 2) 0.00
July (Term 1) 0.00
July (Term 2) 30.77
August (Term 1) 9.46
August (Term 2) 0.00
September (Term 1) 38.46

September (Term 2) 56.25*

Appendix E

Number of LFM sage measurement sites per term in 2019. These points were used for training and validating
the model. There are fewer points available early in the fire season. The maximum number of points available
for training the model was calculated by taking 60% of the minimum number of training sites available from
the previous two terms.

Number of LFM Sage Maximum Number
Term Measurements taken in of Points Available
2019 for Training
April (Term 1) 11 N/A
April (Term 2) 18 N/A
May (Term 1) 36 6
May (Term 2) 20 10
June (Term 1) 67 21
June (Term 2) 79 12
July (Term 1) 114 40
July (Term 2) 76 47
August (Term 1) 88 68
August (Term 2) 60 45
September (Term 1) 44 52
September (Term 2) 33 36

15



	1. Abstract
	2. Introduction
	3. Methodology
	4. Results & Discussion
	5. Conclusions
	6. Acknowledgments
	7. Glossary
	8. References
	9. Appendices

